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Ah&met-Gas from a reservoir at constant pressure and temperature is forced through a two-dimensional 
porous region. The surface through which the gas exits is at a specified uniform temperature and pressure. 
The local gas and solid matrix temperatures are assumed equal. General solutions for the local tempera- 
ture and pressure in the porous medium are found as a function of a potential. This potential can be de- 
termined by solving Laplace’s equation in the porous region for a simple set of boundary conditions, and 
the temperature and pressure will then be known functions of position. Because of the nature of the boundary 
conditions it is particularly convenient to solve Laplace’s equation by conformal mapping. By using this 
technique some illustrative heat and mass flow results were calculated for a porous wall with a step in 

thickness, a wall supplied with gas through periodic slots, and an eccentric annular region. 

A, 

NOMENCLATURE 

thickness ratio of step porous 
wall or dimensionless half width 
of reservoir opening for sup 
ported porous wall, u/h,; 

largest thickness of step porous 
wall or half width of reservoir 
opening for supported porous 
wall; 
dimensionless half period of 
periodic supported porous wall 
(Figs. 4 and 7); 
specific heat at constant pressure; 
normal (incomplete) elliptic in- 
tegral of first kind; 
intermediate mapping parameter 
for eccentric annular porous 

region; 
general reference length of porous 
region; 
complete elliptic integral of the 
first kind K(k); 
defined by K’(k) 3 K(J1 - k’); 
modulus of elliptic integral; 
mapping parameters defined by 
equations (48); 

effective thermal conductivity of 
porous region; 
dimensionless arc length along 
inside cylinder of eccentric porous 
region, l,Jh,; 

arc length along inside cylinder 
of eccentric porous region; 
unit outward drawn normal; 
pressure ratio, p/p0 ; 
pressure; 
dimensionless energy flux vector, 

qh,lk, t, ; 
energy flux vector; 
gas constant; 
dimensionless radius of cylinder; 

S,, S,, S, S,,, surfaces bounding porous region 
in dimensionless coordinates; 

s1, s,, left and right hand surfaces 
bounding porous region; 

s, upper (or inner) surface bounding 
porous region; 

SO, lower (or outer) surface bounding 
porous region; 

T, temperature ratio, t/t, ; 

t, absolute temperature; 
u, intermediate mapping variable; 
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velocity vector; 
intermediate mapping variable; 
complex potential, $ + i& ; 
dimensionless coordinate in 
physical plane, x/h,; 

coordinate in physical plane; 
dimensionless coordinates to 
locate inner eccentric cylinder; 
dimensionless coordinate in 
physical plane, y/h,; 

coordinate in physical plane; 
complex physical coordinate, 
x + iY; 
parametric variable for equation 

(49); 
permeability of porous material; 
parameter p,C,h&(2pk,); 
gas viscosity; 
real part of 0; 
gas density; 
energy flux potential; 
constant surface potential deter- 
mined by equation (32); 
dimensionless energy flux poten- 
tial, Q/Q,; 
intermediate variable, (In R,) II/; 
harmonic conjugate of &, % W; 

intermediate mapping variable. 

on lower (or outer) boundary se; 
in coolant reservoir; 
on upper (or inner) boundary s; 
on left hand boundary s1 ; 
on right hand boundary s,. 

INTRODUCTION 

A METHOD for extending the use of a metallic 
structural material to higher temperature appli- 
cations is to provide transpiration cooling. The 
metal is made in a porous form and coolant is 
forced through it from a reservoir toward the 
boundary exposed to the high temperature 
source. Some possible applications are for 
cooling turbine blades, rocket nozzles, arc 
electrodes, and portions of surfaces during 

either high speed flight or reentry into the 
Earth’s atmosphere. 

The energy equation governing the tempera- 
ture distribution in a porous medium contains 
the velocity distribution of the coolant within 
the matrix material. This velocity is generally 
a complicated function of position thereby 
complicating the energy equation. Moreover, 
when the cooling fluid is a gas the energy 
equation and the momentum equation are 
coupled and the problem becomes nonlinear. 
In the present paper it will be shown that a 
large class of two-dimensional porous cooling 
problems where the fluid is a gas can be reduced 
to solving Laplace’s equation and therefore 
can be solved by standard techniques such as 
conformal mapping. Previous solutions to 
porous cooling problems dealing with two- 
dimensions and/or compressible flows were 
limited to one-dimensional (plane, cylindrical 
and spherical) compressible flows [I], two- 
dimensional incompressible flows [24] and a 
numerical solution for compressible two-di- 
mensional flow [5]. 

It will be assumed that the thermal resistance 
between the fluid and matrix material is small 
so that the local fluid and matrix temperatures 
are equal. As a consequence, a single energy 
equation can be written that includes the heat 
transport by conduction in the matrix material 
and by coolant convection. One boundary of 
the porous region is in contact with the coolant 
reservoir which is at constant pressure and 
temperature. The boundary through which the 
coolant exits is at constant pressure and has a 
specified uniform temperature. The heat and 
mass flows in the porous region are governed 
by the energy conservation equation, the equa- 
tion of continuity, Darcy’s law, and the perfect 
gas law. The solution of these equations is 
obtained by using the energy conservation 
equation to define a potential that satisfies 
Laplace’s equation in the porous region and a 
simpler set of boundary conditions. The remain- 
ing equations are then solved to obtain general 
expressions for the temperature and pressure 
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distributions in terms of this potential. Upon 
solving Laplace’s equation in any specific 
region to obtain an expression for this potential 
in terms of the physical coordinates, the tem- 
perature and pressure become known functions 
of position. 

The porous region maps into a simple strip 
or rectangular geometry in the complex poten- 
tial plane, and consequently conformal mapping 
is a convenient technique for solving Laplace’s 
equation. By using this method, some illustrative 
results are obtained for a porous wall with a 
step in thickness, a wall with gas supplied 
through periodic slots on one boundary, and 
an eccentric annular region. 

ANALYSIS 

Physical system being analyzed 
The types of geometries of the porous media 

that will be considered are shown schematically 
in cross section in Fig. 1. It is assumed that no 
changes occur in the direction perpendicular 
to the x-y plane so that the situations are two 
dimensional. Figure l(a) is a long wall of 
arbitrarily varying thickness; Fig. l(b) is a 
finite region where two opposing sides are 
insulated and have no fluid flowing across 
them; Fig. l(c) is a doubly connected region. 
The symbol h, denotes a characteristic dimen- 
sion for each geometry. 

The lower [or outer in the case of Fig. l(c)] 
surface sO of any of these porous regions has an 
outward-drawn unit normal vector A,. The 
upper [or inner in the case shown in Fig. l(c)] 
surface s has an outward-drawn unit normal 
vector A,. In the case of the region shown in 
Fig. l(b) the left and right hand surfaces sI and 
s,, respectively, have unit outward drawn nor- 
mals A, and A,, respectively. Let k,,, denote the 
effective thermal conductivity (based on the 
entire cross sectional area) of the porous 
medium and let K denote its permeability. 

An ideal gas whose density and pressure are 
denoted by p and p respectively is flowing 
through the porous region. The specific heat 
at constant pressure C, and for simplicity the 

viscosity p of the gas will be taken as constant. 
The use of a representative average viscosity 
value (over the range of gas temperatures in- 
volved) is not expected to change the surface 
heat and mass fluxes in any qualitative way. In 
addition, it will be assumed that the thermal 
conductivity of the gas is very small compared 
with k, and that for a given pressure drop 
across the porous region the pore size is 
sufficiently small so that Darcy’s law governs the 

A 
ns Y 

(a) wall of variable thickness. &wr and tc>tm 

No flow and Y 

‘No flow and 

(b) Region with four sides. po>pS and r,>?, 

Po.Pm *cc 

W Doubly connected region. po>pS and r,X, 

FIG. 1. Porous configurations being analyzed. 
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flow of the gas through this region. Let p denote 
the Darcy velocity (local volume flow divided by 
entire cross-sectional area rather than by pore 
cross sectional area) of the gas. 

For each geometry the region below [or 
outside in the case shown in Fig. l(c)] the porous 
material is a reservoir which is maintained at 
constant pressure and temperature p0 and t,, 
and therefore at constant density p,. The upper 
(or inner) surface of the porous region is at a 
constant temperature t, and the region above 
(or inside) the porous region is maintained at 
the constant pressure p,. We suppose that 
p0 > p, so that the gas flows from the reservoir 
through the porous wall and out through the 
top (or inner) surface. Since p0 and p, are both 
constant, the gas velocity at both the upper and 
lower wall surfaces will be in a direction which 
is perpendicular to these surfaces. The tempera- 
ture t, at the upper (or inner) surface is constant 
and larger than t, so that heat will flow by 
conduction from the upper (or inner) surface 
towards the reservoir. The following analysis 
applies if the direction of both the heat and 
mass flows are reversed but some details of the 
analysis must be changed if the direction of 
only one of these flows is reversed. 

Governing equations 
It is assumed that the thermal communication 

between the fluid and the porous matrix is 
sufficiently good, so that the local fluid tem- 
perature will be approximately equal to the 
local matrix temperature. We denote this 
common temperature by t. It will be assumed 
that the pore size is very small compared with 
any overall dimension of the porous region. 
When these assumptions are made, the flow of 
heat and mass within the porous region are 
governed by the following equations: 

v.q=o (Conservation of energy) (1) 

q zs - k,Vt + puC,t (2) 

v . (pu) = 0 (Conservation of mass) (3) 

u= -livp 
P 

(Darcy’s law) (4) 

p = pRt (Ideal gas law). (5) 

The vector q defined in equation (2) is the net 
energy flux vector with the kinetic energy term 
neglected. (The neglect of the kinetic energy is 
consistent with the approximation that Darcy’s 
law holds.) Darcy’s law as given by equation (4) 
applies for compressible flow (see [6] and [7]). 
In the following we shall assume for simplicity 
that the thermal conductivity k, and the 
permeability K are constants. 

Boundary conditions 
As the gas in the reservoir approaches the 

porous region the gas accelerates to the entering 
velocity (the pressure change associated with 
this velocity change is negligible compared to 
the pressure drop through the porous region), 
and temperature rises from the reservoir tem- 
perature t, to the surface temperature t, of 
the porous medium which is an apriori unknown 
variable along sO. Since the thermal conductivity 
of the gas is assumed to be much less than k,, 
the thickness of the gas layer over which this 
temperature rise takes place is very small 
compared with the porous region thickness 
provided the flow is not very small. We can, 
therefore, assume that this thermal layer is 
locally one dimensional. Since the velocity is 
perpendicular to s0 there is no flow along this 
thermal layer. Hence, by applying an energy 
balance to the thermal layer the boundary 
conditions are 

k,ii,, . Vt = pC,(t - t,) A,. u 

p = p. = constant 1 

for (x, y) on .sO. (6) 

On the upper (or inner) surface a uniform 
temperature is specified so that the boundary 
conditions are 

t = t, = constant 
for (x, y) on s. (7) 

p = ps = constant 



ANALYSIS OF HEAT TRANSFER FOR COMPRESSIBLE FLOW 1681 

In the case of the bounded region shown in 
Fig. l(b) the additional boundary conditions 
along the sides of the region are obtained by 
noting that since there is no flow of heat or 
mass across the side surfaces sI and s,., the 
normal derivative of both the pressure and the 
temperature must vanish at these surfaces. 
Hence, 

ditions (6)-(8b) we find the following convenient 
dimensionless forms : 

Gl A,. VT + IA,. a@“) = 0 

P=l 

for (X, Y) on S, (14) 

A,. Vt = 0 
for (x, y) on sI (8a) 

T=T, 

A,. vp = 0 T + rZP2 = T, + lP,z 
for (X, Y)onS (15) 

A,. Vt = 0 
for (x, y) on s,. (8b) 

A,. vp = 0 

Dimensionless form of equations 
It is now convenient to introduce the following 

dimensionless quantities 

X = x/h, 

Y = y/k 
T = tft, 

T, = t&m 

P = PIP0 

P, = PSIPO 

Q = qh,lk,t, 

Q =i&+T-$ 

(9) 

’ (IO) 

Upon substituting equations (4) and (5) into 
equations (2) and (3) to eliminate u and p, and 
using the dimensionless quantities, we find that 
equations (l)-(3) can be written as 

v.Q=O (II) 

Q = - v(T + lPz) (12) 

v2(P2) = (l/T) VT. v(P2). (13) 

Upon using equations (4) and (5) and the 
dimensionless quantities in the boundary con- 

A,.?T = 0 

fil . v(T + AP2) = 0 
for (X, Y) on Sr (16a) 

fi,.qT = 0 

A,. v(T + 1P2) = 0 
for (X,Y)onS,. (16b) 

Solution for T and P in terms of a potential 
Now, equation (12) shows that the energy 

flux is equal to the gradient of a potential. 
Therefore, we put 

@ E T - Co + 1(P2 - 1) (17) 

where C, is a constant to be specified sub 
sequently. Equation (12) then gives 

Q= -?@ 

so equation (11) yields 

02@ = 0. (18) 

Thus, the heat flux potential Qi satisfies Laplace’s 
equation. The boundary conditions (15)--(16b) 
supply boundary conditions for @ directly 
but the boundary condition (14) will only give 
a boundary condition which couples @ with T. 
Hence, equation (18) must be solved simul- 
taneously with equation (13) in order to find 
the solution to the boundary value problem 
posed above. We shall now show however that 
this boundary value problem can be solved by 
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assuming a priori that T is a function of @ only, Substituting equation (23) into this result yields 
that is, 

T(X, Y) = T[@(X, Y)]. (19) (1 - C,)&R,.2i@ = 0 for (X, Y) on S,. 

Then equation (17) shows that P is a function of Hence, the first boundary 
@ only. Hence. satisfied if we put 

(20) 
c, = 1. 

Equation (23) then becomes 
and therefore, equation (17) shows that 

T = 1 + C,e-@. 

condition (14) is 

(21) When equation (24) is substituted into equa- 

6’4) 

Equations (18) and (21) imply 

(22) 

tion (17) and the results used in the second 
boundary condition (14) we find 

@=l-C,+C,e-@ for (X,Y)onS, 

Substituting equations (20H22) into equa- 
so that the second boundary condition (14) is 

tion (13) shows that 
satisfied when @(X, Y) = constant for (X, Y) 
on S,,. Since C, is arbitrary we can put 

[$+fg$ -gpv=Q toobtain 
c, = 1 + c, (25) 

Hence equation (13) will be satistied if we put @(X, Y) = 0 for (X, Y) on So. (26) 

or equivalently 

;[+(g- l)] =o. 

Upon integration we find that 

(23) 

where C, and C, are constants. 
These constants, are evaluated by using the 

boundary conditions. Thus, substituting equa- 
into the first boundary tions (20) and (21) 

condition (14) yields distributions by the following functions of @: 

T=l+(T,--l)e@“-@ (30) 
V@ = 0 A(P2 - 1) = (T, - l)e@s(l - e-3 + @. (31) 

for (X, Y) on S,. The constant Gs is determined by the following 

1 dT 
l+p- 

T-ld@ > 
fi0 

Consideration of the boundary conditions (15) 
on S shows that it is convenient to define a 
constant Qs by 

@, = T, - 1 - c, + L(P,2 - 1). (27) 

Then it follows from equations (17), (24) and 
(25) that the boundary conditions (15) will be 
satisfied if we put 

@(X, Y) = Gs for (X, Y) on S (28) 

C, = (T, - 1)e”s. (29) 

Equations (29) and (25) are used to eliminate 
C, and C, from equations (24) and (17) giving 
the desired general temperature and pressure 
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relation from equations (29) and (27), 

Qs = (T, - 1) (1 - e@s) + A(P,” - 1). (32) 

Notice that since P, < 1 and T, > 1, the right 
hand side of equation (32) will always be nega- 
tive if Qj, is positive. Hence, for the condition 
of interest here, Qp, must be negative if it is to 
satisfy equation (32). More generally, since 
T, > 1 and P2 is a decreasing function of 
distance in going from S, to S it follows from 
equation (3 1) that @ is also a decreasing function 
of distance in going from S, to S. 

For the case shown in Fig. l(b) the boundary 
conditions (16a) and (16b) must also be satisfied. 
It follows from equations (20) and (17) that 
these conditions will be satisfied if we put 

A,. O@ = 0 for (X, Y) on S, (33a) 

A,. v@ = 0 for (X, Y) on S,. (33b) 

Thus, the solution to the differential equa- 
tions (11x13) that satisfied the boundary 
conditions (14H16b) is given by equations 
(30)-(32). The function @ in these equations is 
determined uniquely by equation (18) and the 
boundary conditions (26), (28) and in addition, 
for the case shown in Fig. l(b) equations (33a) 
and (33b). 

Equations to determine potential in terms of 
physical coordinates 
Equations (30) and (31) express the tempera- 

ture and pressure distributions as explicit 
functions of a potential. Thus, once the potential 
is determined as a function of the physical 
coordinates, then so are the temperature and 
pressure. In the relations for the potential 
function it is convenient to simplify the boundary 
conditions by defining a normalized potential 

Qi by 

Then it follows from equations (18), (26), (28), 
(33a) and (33b) that 4 can be obtained by 

solving Laplace’s equation 

O”& = 0 

with the boundary conditions 

&(X, Y) = 0 for (X, Y) on So 

4(X, Y) = 1 for (X, Y) on S 

Fi, . Qc$ = 0 for (X, Y) on S, 

A,. ?d, = 0 for (X, Y) on S,. 
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(35a) 

(35b) 

(35c) 

(36) 

Relations for heat and mass flux at surface of 
porous medium 
Two quantities of important practical interest 

are the heat flux conducted into the solid and the 
mass flux leaving the porous region at the 
surface S. 

The heat flux conducted into the porous 
material at the upper (or inner) surface is given 

by 

qS = k,A, . Vt for (x, y) on s. 

Introducing dimensionless quantities and using 
equation (30) gives 

q&r 
k,(t, - t,) = - 

A,. P@ for (X, Y) on S. 

But Qi is constant on S. Hence (since @J is a 
decreasing function of distance when going 
from So to S) 

(37) 

and upon using equation (34) 

,@,,k.:~f. L) 
= I~c#J( for (X, Y) on S. (38) 

The mass flux at the upper or inner surface 
is found from equations (4), (5), (9) and (10) to be 

pu.A,= -;pvp.A,= - & f Q(W) . A, 

P r 

for (X, Y) on S. 

Upon using equations (31), (37) and (34) this 
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becomes 

hC PU.4 
, p m = (Q&I for (X, Y) on S. (39) 

( > s 

Use of conformal mapping to obtain 4(X, Y) 
The nature of the boundary conditions (35b) 

and (35c), makes it particularly convenient to 
use conformal mapping to relate 4 to X and Y. 
Since & is a solution to Laplace’s equation, 
there exists a harmonic function $ and an 
analytic function W of the complex variable 

Z=X+iY (40) 

such that 

W = $ + i&. (41) 
&Lr JI_cOnst 

Physically the change in $ between any two 

JI 

points in the physical plane is proportional to 
(b) Region corresponding toFigs.l(b) and (c) 

the net energy flow across any curve joining 
FIG. 2. Potential planes (W = t,b + iv) corresponding to 

porous regions. 

.-Q=o 
-+ 

(a) Regm corresponding tofig. I (a) 

Q 

I 

those two points. Hence, for the case shown in 
Fig. l(a), II/ must vary between -cc and +cc 
as X varies between -cc and + co. For the smooth doubly connected region can be mapped 

case shown in Fig. l(b) it follows from the into an annulus. Let the annulus be in the U- 

Cauchy-Riemann equations that the boundary plane and have a radial cut in it. Then the 

conditions (36) are equivalent to requiring mapping W = i In U maps the slit annulus 

that II/ be equal to a constant on S, and S,. in the U-plane into the rectangular region 

Hence, in this case shown in Fig. 2(b) and hence, the mapping 

WeW = constant for Z on S, 
Z + W transforms the interior of the porous 

(42) 
region shown in Fig. l(c) also into the rect- 

9&W = constant for Z on S,. angular region in the W-plane shown in Fig. 2(b). 

Equations (35b) and (c) show that in all cases 
To obtain expressions for the surface heat 

and mass fluxes we use the following well- 

9mW = 0 for Z on S, known relation given in [lo] (p. 182), 

9mW = 1 for Z on S. 
(43) 

Hence, in the case shown schematically in 

F&I = Igi. 
Fig. l(a) the mapping Z + W transforms the Then equations (38) and (39) become 

interior of the porous medium into the infinite 
strip shown schematically in Fig. 2(a) in the 
W-plane. For the case shown in Fig. l(b) the 

,@,,kj;~- tm) = hrCp k,,&l - dZ 
(““A) _ (!!!I 

mapping Z -+ W transforms the interior of the 
for (X, Y) on S. (44) 

porous region into the rectangular region in the Thus, once the mapping W + Z is determined, 
W-plane shown in Fig. 2(b). In order to obtain which transforms the porous region in the 
the mapping into the potential plane for the case physical plane into the rectangle or strip in 
shown in Fie. lfc) recall that everv suffcientlv v \I , ~, the potential plane and which depends only on 

MARVIN E. GOLDSTEIN and ROBERT SIEGEL 



ANALYSIS OF HEAT TRANSFER FOR COMPRESSIBLE FLOW 1685 

the geometry of the porous region, the surface 
heat and mass fluxes can be calculated from 
equation (44). 

APPLICATION OF GENERAL SOLUTION 

Step porous wall 
As an example solution for a porous region of 

the type shown in Fig. l(a) consider the porous 
wall with a step change in cross section shown 
in Fig. 3. In this Sgure all lengths have 

Y 

been 

I 

I 
-x 

FIG. 3. Step porous wall in dimensionless physical plane. 

(a) Region in dimensionless physical plane 

Q 

6 5 
,“p” 

I 4 

I I / I 
6 I 2 

JI 

(b) Region in potential plane (IV-Jl+icp) 

--.-,‘_.-!A 
5 6 7 

-I/k2 -X,/k* -I 0 k,/kz I/k2 

(cl R&n in the U plane 

FIG. 4. Porous wall with coolant supplied through periodic 
openings. 

made dimensionless by dividing by the smaller 
thickness. The mapping which transforms this 
region into the unit strip of Fig. 2(a) is given 
parametrically in terms of a complex variable 

0 by PI. 

Z = $Aln(z) - in(s)] 

enw _ A2 

( 1 

l/2 (45) 
CO= 

e ?CW -1 

where 1 f o < A for Z on S. 
Upon differentiating equation (45) we find 

that 

dW o 
__ = -. 
dZ A 

Let 5 = WBO. Then for Z on S, (d W/dZI is 
given parametrically as a function of the dis- 
tance X, along the upper surface by 

1 s’+l 

Xs=IZA In 5-l [( > 

I 

l<l<AA. (46) 

Porous wall with gas supplied through periodic 
slots 
As an example of the porous region of the 

type shown in Fig. l(b) consider the section of 
wall shown in Fig. 4(a). This may represent a 
section of a long porous wall with a periodic 
distribution of openings on the reservoir side. 
The remainder of the boundary on the reser- 
voir side could correspond to supports which 
are frequently necessary when porous structures 
are used. All lengths are normalized by the 
thickness of the wall. Since both the porous 
region in the physical plane and the correspond- 
ing region in the W-plane [Fig. 4(b)] are rect- 
angles they can both be mapped into the upper 
half U-plane shown in Fig. 4(c) by elliptic func- 
tions [9]. The mappings which transform 
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corresponding points into corresponding points 
(as indicated in Fig. 4) are 

U = sn[WK’(k,), k2] 

; U = sn(ZK’(k,), k,) 
(47) 

1 

where 

B = K&r) 

K’(k,) 

k, = k, sn[AK’(k,), k,] (48) 

K is the complete elliptic integral of the first 
kind and 

(a) Dimensionless physical plane 

K’(k) = K(J1 - k2). 

Upon differentiating equations (47) we find 

As a consequence of these mappings, we find that 
for Z on S, Id W/dZI is given as a parametric 
function of distance X, along the upper surface 
in Fig. 4(a) by 

(49) FIG. 5. Porous eccentric annular region. 

indicated in Figs 5(a) and (b) by 

where F is the normal elliptic integral of the 
first kind and we have put 

rj = (k, WAY)-‘. 
where 

Eccentric annular region 
An example of a porous region of the type 

shown in Fig. l(c) is the region between the two 
eccentric circular cylinders shown in Fig. 5(a). 
All lengths are made dimensionless by the radius 
of the large cylinder. It is shown in [9], p. 370, 
and [ 101, p. 287, that this region is mapped into 
the annular region in the Vplane in the manner 

g = 1 + x,x, + ;(l - x:)(1 - X$) 
X1 + x2 

and the outer radius R,, shown in Fig. 5(b), is 
given by 

R 
0 

= ’ - x1x2 + J(l - x:)(1 - X;). 

x, -x, 

(b) Intermediate V-plane 

*’ _~ 

-r/in Ro 0 7r/ln Ro 

(c) Potential(W) plane 

T/= z-g 
gz - 1 
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The annular region in the V-plane is mapped 
into the rectangular region in the W-plane in 
the manner indicated in Fig. 5(c) by 

W = iz = iln(~)/lnR,. (50) 
0 

As a result of these relations we find that 
ldW/dZI with Z on S; is given as a parametric 
function of dimensionless distance L, [see 
Fig. 5(a)] along the inner circle by 

RESULTS AND DISCUSSION 

The main purpose of this paper has been to 
develop a general solution for a certain class of 
two-dimensional compressible porous cooling 
problems. This class of problems corresponds 
to the situation where gas from a reservoir 
at constant pressure and temperature is forced 
through the porous region and exits at a 
boundary maintained at constant temperature 
into a region of constant pressure. The solution 

(51) 

where (T is defined by 
(1 - X’,)” + (1 - xi,+ 

C = (1 - x3,* - (1 - XT)+ 

and we have put $ = (In R,)$. 
These results can now be used with equations 

(44) to compute the heat flux into the porous 
region and the mass flux through the porous 
region at the surface s through which the gas 
is exiting from the region. 

is obtained by using the equation of conserva- 
tion of energy to define a potential that satisfies 
Laplace’s equation within the porous region 
and that satisfies certain simple boundary 
conditions on the boundary of the region. The 
remaining equations that govern the problem 
can then be solved to provide general solutions 
for the pressure and temperature distributions 
explicitly in terms of this potential. Therefore, 

01 I I I I I I I 
-2 -I 0 I 2 3 4 5 

x,/n, 

FIG. 6. Dimensionless mass flux and heat flux at surface of 
step porous wall. 
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FIG. 7. Dimensionless mass flux and heat flux at surface of 
porous wall with coolant introduced through periodic slots. 
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FIG. 8. Dimensionless mass flux and heat flux along the 
inside of an eccentric porous annulus (radius of inner circle 

ri = hJ2). 
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by solving Laplace’s equation in any specific 
region to obtain an expression for this potential 
in terms of the physical coordinates, the tem- 
perature and pressure are determinable func- 
tions of position. 

Several illustrative examples were worked 
out in detail by using conformal mapping to 
obtain the required solutions to Laplace’s 
equation. These results are shown in Figs. 68. 
In each figure a dimensionless mass flux leaving 
the porous region and a dimensionless heat 
flux at the surface are plotted as functions of 
position along the surface. The density in the 
exit mass flux is that corresponding to the 
imposed exit pressure and surface temperature. 
The quantity Qs in the dimensionless fluxes is 
obtained from equation (32). 

Figure 6 gives results for walls having various 
step changes in their thickness as designated 
by the parameter A. As a special case it is 
evident from the left end of the curves that for 
a wall having a uniform thickness h, the results 
are given by 

Consequently, for the step wall, the dimension- 
less mass and heat fluxes vary from unity to 
hJa, where a is the thickness of the thick region. 
The curves show that the two-dimensional 
effects are primarily confined to within one 
thickness of the thin portion of the wall to the 
left of the step (x$h, = - 1) and one thickness 
of the thick portion to the right of the step 
(q/a = 1 or xJh, = A). 

Figure 7 shows results for a wall that is of 
uniform thickness but has its lower boundary 
only partially exposed to the coolant reservoir. 
For small blockage, that is when the opening a 
is close to the width b, the curves go toward 
unity, which is the result for an unobstructed 
plane wall. As expected the highest velocities 

and heat fluxes are at the exit locations opposite 
the center of the opening. 

Results for eccentric annular porous regions 
are shown in Fig. 8 for various eccentricities 
and for the case where the radius of the inner 
circle is one-half that of the outer circle. As 
would be expected the largest flows occur where 
the wall is thin. For the concentric case the 
solutions from equations (44) and (51) reduce to 

p&C. 4.h. h.lr; 

The three sets of results shown in Figs. 6-8 
serve to demonstrate the type of results that 
can be obtained from the general two-dimen- 
sional compressible solution developed in this 
paper. 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 
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ANALYSE DU TRANSFERT THERMIQUE POUR UN ECOULEMENT COMPRESSIBLE 
DANS UN MILIEU POREUX BIDIMENSIONNEL 

Rbumkan force B travers une rCgion poreuse bidimensionnelle un gaz provenant d’un reservoir a 
pression et temperature constantes. La surface de sortie est a une temperature et a une pression uniformes 
don&es. Les temperatures locales du gaz et de la matrice solide sont suppos&es &gales. On trouve que les 
solutions g&n&ales pour la temperature et la pression locales dans le milieu poreux sont fonctions d’un 
potentiel. Ce potentiel peut dtre determine par la resolution de I’equation de Laplace dans la region poreuse 
pour un ensemble simple de conditions aux limites et on connalt alors la temperature et la pression comme 
des fonctions de point. A cause de la nature des conditions aux limites, il est assez facile de rboudre I’Cqua- 
tion de Laplace par une transformation conforme. Pour illustrer cette technique quelques r&hats massique 
et thermique sont donnees pour une paroi poreuse avec un echelon dans I’tpaisseur une paroi alimentee 

en gaz a travers des fentes ptriodiques et une region annulaire excentrique. 

ANALYSIS DES WARMEUBERGANGS BE1 KOMPRESSIBLER STRi)MUNG IN 
ZWEIDIMENSIONALEN PORt)SEN MEDIEN 

Zusammenfassung- Gas wird von einem Behalter konstanten Druckes und konstanter Temperatur durch 
eine zweidimensionale, poriise Zone geleitet. Die Oberfllche, durch die das Gas austritt, wird auf ganz 
bestimmten gleichfiirmigen Werten von Temperatur und Druck gehalten. Die lokalen Werte der Gas- und 
Feststofftemperatur werden als gleich angenommen. Allgemeine Liisungen’fiir die lokalen Temperatur- 
und Druckverteilungen im porijsen Medium werden als Funktion eines Potentials gefunden. Dieses 
Potential kami durch die Losung der Laplace-Gleichung in der poriisen Zone ftir einige einfache Rand- 
bedingungen bestimmt werden. Temperatur und Druck sind dann bekannte Funktionen des Ortes. 
Wegen der Art der Randbedingungen ist es sehr bequem die Laplace-Gleichung durch konforme Abbil- 
dung zu l&en. Mit dieser Technik wurden einige aufschlul3reiche Ergebnisse fiir den Warme- und 
Massenstrom errechnet fiir eine poriise Wand mit stufenfiirmig gelnderter Dicke, eine Wand mit regel- 

mll3igen GasdurchlaBschlitzen und einer exzentrischen Kreisringzone. 

AHA;IB3 TEHJIOOBMEHA &WI CJIYYAH HEClfUJMAEMOrO 
TEYEHMH B J&BYMEPHbIX HOPHCTbIX CPEAAX 

AHHoTaqnsI-I’as 113 pe3epByapa npcl nocToswHbIx AaBneHna kt TeMnepaType no~~aBneH~e~ 

npOCaWBaeTCR Yepe3 SByMepHbIi nOpMCTbIfi ysaCTOK. nOBepXHOCTb, Yepe3 KOTOpyIO 

B~IX~RIJT ra3, HaxoaxTcR np~ 3anaHHoti o~~opo~~ofi TeMnepaType pi ,qaBneHncr. JIoKanbHbIe 

TeMnepaTypbI ra3a I4 TBi~+pzOr0 CKeJIeTa npHHI4MaWTCH OAIJHaKOBbIMH. PeIIIeHAR B o6weM 

BMAe HJIR JlOKaJlbHOm TeMnepaTypbI H HaBJleHMH B nOpllCTOfi Cpe@ HaXOARTCR KaK I#I~HK~HH 

noTeHqHana. 3~0~ no*Hqnan ~0x110 0npe;lennTb E13 peuIewiR ypaBHeHan JIannaca B 

nopwToM ysacTKe HJ~R nopwToti cw2TeMbI rpaHwrHbIx ycnoaal, nocne sero TehinepaTypa-sq 

AaBnewe 6yay~ I13BecTwMH @~HKQIIHMM nojIo%eHw. Bnaro;[apfl xapaKTepy rpaHwiHbIx 

yCJIOBMfi npaKTINeCK&f yZO6HO pelIIaTb ypaBHeHt4e aanJIaCa C nOMOWbl0 KOH@OpMHOrO 

OTO6pa?KeHlW. c nOMOUbH, 3TOti MeTOJJIJKll paCCWiTaHbI HeKOTOpbIe HarJIRAHbIe pe3yJIbTaTbl 

HJIIJ nOTOKa TenJIa H MaCCbl B CJIyqati nOp&fCTOfi CTeHKEi CO CKa'lKOM TOJIqkIHbI, CTeHKll C 

nonaseil ra3a sepea nepaonMqecKcll pacno.nolfCefrHbIe qenn TI aKcqeKTpusnor0 KonbgeBoro 

yqacTKa. 


