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Abstract—Gas from a reservoir at constant pressure and temperature is forced through a two-dimensional
porous region. The surface through which the gas exits is at a specified uniform temperature and pressure.
The local gas and solid matrix temperatures are assumed equal. General solutions for the local tempera-
ture and pressure in the porous medium are found as a function of a potential. This potential can be de-
termined by solving Laplace’s equation in the porous region for a simple set of boundary conditions, and
the temperature and pressure will then be known functions of position. Because of the nature of the boundary
conditions it is particularly convenient to solve Laplace’s equation by conformal mapping. By using this
technique some illustrative heat and mass flow results were calculated for a porous wall with a step in
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NOMENCLATURE

thickness ratio of step porous
wall or dimensionless half width
of reservoir opening for sup-
ported porous wall, a/h, ;

largest thickness of step porous
wall or half width of reservoir
opening for supported porous
wall;

dimensionless half period of
periodic supported porous wall
(Figs.4 and 7);

specific heat at constant pressure;
normal (incomplete) elliptic in-
tegral of first kind;

intermediate mapping parameter
for eccentric annular porous
region;

general reference length of porous
region;

complete elliptic integral of the
first kind K(k);

defined by K'(k) = K(/1 — k?);
modulus of elliptic integral;
mapping parameters defined by
equations (48);
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thickness, a wall supplied with gas through periodic slots, and an eccentric annular region.

effective thermal conductivity of
porous region;

dimensionless arc length along
inside cylinder of eccentric porous
region, I /h,;

arc length along inside cylinder
of eccentric porous region;

unit outward drawn normal;
pressure ratio, p/p,;

pressure;

dimensionless energy flux vector,
qh.[knte s

energy flux vector;

gas constant;

dimensionless radius of cylinder;
surfaces bounding porous region
in dimensionless coordinates;
left and right hand surfaces
bounding porous region;

upper (or inner) surface bounding
porous region;

lower (or outer) surface bounding
porous region;

temperature ratio, t/t_;

absolute temperature;
intermediate mapping variable;
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u, velocity vector;

V, intermediate mapping variable;

W, complex potential, ¥ + i¢;

X, dimensionless coordinate in
physical plane, x/h,;

X, coordinate in physical plane;

X, X, dimensionless coordinates to
locate inner eccentric cylinder;

Y, dimensionless coordinate in
physical plane, y/h,;

¥, coordinate in physical plane;

Z, complex physical coordinate,
X +1iY;

1, parametric variable for equation
(49);

K, permeability of porous material;

2, parameter p,,, C xpo/(2uk.,);

u, gas viscosity;

g, real part of w;

0, gas density;

P, energy flux potential;

b, constant surface potential deter-
mined by equation (32);

o, dimensionless energy flux poten-
tial, &/®,;

v, intermediate variable, (In Ry) ¢/;

v, harmonic conjugate of ¢, W ;

w, intermediate mapping variable.

Subscripts
0, on lower (or outer) boundary sg;
oo, in coolant reservoir;

on upper (or inner) boundary s;
on left hand boundary s;;
on right hand boundary s,.

S~ W

>

INTRODUCTION

A MEeTHOD for extending the use of a metallic
structural material to higher temperature appli-
cations is to provide transpiration cooling. The
metal is made in a porous form and coolant is
forced through it from a reservoir toward the
boundary exposed to the high temperature
source. Some possible applications are for
cooling turbine blades, rocket nozzles, arc
electrodes, and portions of surfaces during
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either high speed flight or reentry into the
Earth’s atmosphere.

The energy equation governing the tempera-
ture distribution in a porous medium contains
the velocity distribution of the coolant within
the matrix material. This velocity is generally
a complicated function of position thereby
complicating the energy equation. Moreover,
when the cooling fluid is a gas the energy
equation and the momentum equation are
coupled and the problem becomes nonlinear.
In the present paper it will be shown that a
large class of two-dimensional porous cooling
problems where the fluid is a gas can be reduced
to solving Laplace’s equation and therefore
can be solved by standard techniques such as
conformal mapping. Previous solutions to
porous cooling problems dealing with two-
dimensions and/or compressible flows were
limited to one-dimensional (plane, cylindrical
and spherical) compressible flows [1], two-
dimensional incompressible flows [2-4] and a
numerical solution for compressible two-di-
mensional flow [5].

It will be assumed that the thermal resistance
between the fluid and matrix material is small
so that the local fluid and matrix temperatures
are equal. As a consequence, a single energy
equation can be written that includes the heat
transport by conduction in the matrix material
and by coolant convection. One boundary of
the porous region is in contact with the coolant
reservoir which is at constant pressure and
temperature. The boundary through which the
coolant exits is at constant pressure and has a
specified uniform temperature. The heat and
mass flows in the porous region are governed
by the energy conservation equation, the equa-
tion of continuity, Darcy’s law, and the perfect
gas law. The solution of these equations is
obtained by using the energy conservation
equation to define a potential that satisfies
Laplace’s equation in the porous region and a
simpler set of boundary conditions. The remain-
ing equations are then solved to obtain general
expressions for the temperature and pressure
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distributions in terms of this potential. Upon
solving Laplace’s equation in any specific
region to obtain an expression for this potential
in terms of the physical coordinates, the tem-
perature and pressure become known functions
of position.

The porous region maps into a simple strip
or rectangular geometry in the complex poten-
tial plane, and consequently conformal mapping
is a convenient technique for solving Laplace’s
equation. By using this method, some illustrative
results are obtained for a porous wall with a
step in thickness, a wall with gas supplied
through periodic slots on one boundary, and
an eccentric annular region.

ANALYSIS

Physical system being analyzed

The types of geometries of the porous media
that will be considered are shown schematically
in cross section in Fig. 1. It is assumed that no
changes occur in the direction perpendicular
to the x—y plane so that the situations are two
dimensional. Figure 1(a) is a long wall of
arbitrarily varying thickness; Fig. 1(b) is a
finite region where two opposing sides are
insulated and have no fluid flowing across
them; Fig. 1(c) is a doubly connected region.
The symbol h, denotes a characteristic dimen-
sion for each geometry.

The lower [or outer in the case of Fig. 1(c)]
surface s, of any of these porous regions has an
outward-drawn unit normal vector A, The
upper [or inner in the case shown in Fig. 1(c)]
surface s has an outward-drawn unit normal
vector fi. In the case of the region shown in
Fig. 1(b) the left and right hand surfaces s; and
s,, respectively, have unit outward drawn nor-
mals A, and f,, respectively. Let k,, denote the
effective thermal conductivity (based on the
entire cross sectional area) of the porous
medium and let » denote its permeability.

An ideal gas whose density and pressure are
denoted by p and p respectively is flowing
through the porous region. The specific heat
at constant pressure C, and for simplicity the
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viscosity u of the gas will be taken as constant.
The use of a representative average viscosity
value (over the range of gas temperatures in-
volved) is not expected to change the surface
heat and mass fluxes in any qualitative way. In
addition, it will be assumed that the thermal
conductivity of the gas is very small compared
with k, and that for a given pressure drop
across the porous region the pore size is
sufficiently small so that Darcy’s law governs the

ny v AT O A
pO-Poo-’w

(a) Wall of variable thickness, g,>p; and #,>7,,

No flow and
insulated,

~“"No flow and
insulated

X

Pos P o

(c) Doubly connected region, po>p; and 7,>1,,

Fi1G. 1. Porous configurations being analyzed.
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flow of the gas through this region. Let p denote
the Darcy velocity (local volume flow divided by
entire cross-sectional area rather than by pore
cross sectional area) of the gas.

For each geometry the region below [or
outside in the case shown in Fig. 1(c)] the porous
material is a reservoir which is maintained at
constant pressure and temperature p, and ¢,
and therefore at constant density p, . The upper
(or inner) surface of the porous region is at a
constant temperature ¢, and the region above
(or inside) the porous region is maintained at
the constant pressure p,. We suppose that
Po > D, so that the gas flows from the reservoir
through the porous wall and out through the
top (or inner) surface. Since p, and p, are both
constant, the gas velocity at both the upper and
lower wall surfaces will be in a direction which
is perpendicular to these surfaces. The tempera-
ture t; at the upper (or inner) surface is constant
and larger than ¢, so that heat will flow by
conduction from the upper (or inner) surface
towards the reservoir. The following analysis
applies if the direction of both the heat and
mass flows are reversed but some details of the
analysis must be changed if the direction of
only one of these flows is reversed.

Governing equations

It is assumed that the thermal communication
between the fluid and the porous matrix is
sufficiently good, so that the local fluid tem-
perature will be approximately equal to the
local matrix temperature. We denote this
common temperature by t. It will be assumed
that the pore size is very small compared with
any overall dimension of the porous region.
When these assumptions are made, the flow of
heat and mass within the porous region are
governed by the following equations:

V.gq=0 (Conservation of energy) (1)
qg=—k,Vt + puC,t (2)
V.(pu) =0 (Conservation of mass) (3)
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u=— %Vp (Darcy’s law) 4

p=pRt  (Ideal gas law). (5)

The vector ¢ defined in equation (2) is the net
energy flux vector with the kinetic energy term
neglected. (The neglect of the kinetic energy is
consistent with the approximation that Darcy’s
law holds.) Darcy’s law as given by equation (4)
applies for compressible flow (see [6] and [7]).
In the following we shall assume for simplicity
that the thermal conductivity %, and the
permeability » are constants.

Boundary conditions

As the gas in the reservoir approaches the
porous region the gas accelerates to the entering
velocity (the pressure change associated with
this velocity change is negligible compared to
the pressure drop through the porous region),
and temperature rises from the reservoir tem-
perature t, to the surface temperature ¢, of
the porous medium which is an a priori unknown
variable along s,. Since the thermal conductivity
of the gas is assumed to be much less than k,,
the thickness of the gas layer over which this
temperature rise takes place is very small
compared with the porous region thickness
provided the flow is not very small. We can,
therefore, assume that this thermal layer is
locally one dimensional. Since the velocity is
perpendicular to s, there is no flow along this
thermal layer. Hence, by applying an energy
balance to the thermal layer the boundary
conditions are

kuftg .Vt = pC(t — t,,) Ay . u}
p = po = constant
for (x,y)on s,. 6)
On the upper (or inner) surface a uniform

temperature is specified so that the boundary
conditions are

t = t, = constant

} for (x,y)ons. (7)
p = p, = constant
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In the case of the bounded region shown in
Fig. 1(b) the additional boundary conditions
along the sides of the region are obtained by
noting that since there is no flow of heat or
mass across the side surfaces s; and s,, the
normal derivative of both the pressure and the
temperature must vanish at these surfaces.
Hence,

A ve=0 } for (x,y)ons, (8a)
ﬁl . VP = 0
fi,. Vt =0
b Vp=0 } for (x,y)ons,. (8b)

Dimensionless form of equations
It is now convenient to introduce the following
dimensionless quantities

1= PoCokPo _ C,xp} o)
2uk,, 2uk, Rt
X = x/h, |
Y = y/h,
T =t/t,
T, =tt,
P = p/po r (10)
P, = py/po
Q = qh/kut,,
~ . 0
V=i e + jﬁ'

J

Upon substituting equations (4) and (5) into
equations (2) and (3) to eliminate » and p, and
using the dimensionless quantities, we find that
equations (1)~(3) can be written as

V.o=0
Q= — V(T + iP?)
V2(p?) = (1yT) VT . V(P?).

(11)
(12)
(13)

Upon using equations (4) and (5) and the
dimensionless quantities in the boundary con-
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ditions (6)-(8b) we find the following convenient
dimensionless forms:

T-1
P=1
for (X,Y)on S,

f,. VT + AR, . V(P =0 }

(14)

T=T,

} for (X,Y)onS (15)
T + AP?2 = T, + AP?
A, VT =0

- } for (X,Y)onS§, (16a)
A, (T + 2P =0

A VT =0 }f X.Y)onS, (16b)
f. 9T + 4P =0 § o K.Tons.

Solution for T and P in terms of a potential

Now, equation (12) shows that the energy
flux is equal to the gradient of a potential
Therefore, we put

®=T-Co+ AP2—1) 17)

where C, is a constant to be specified sub-
sequently. Equation (12) then gives

Q0=-Vo
so equation (11) yields
Vi = 0. (18)

Thus, the heat flux potential @ satisfies Laplace’s
equation. The boundary conditions (15)-(16b)
supply boundary conditions for & directly
but the boundary condition (14) will only give
a boundary condition which couples @ with T.
Hence, equation (18) must be solved simul-
taneously with equation (13) in order to find
the solution to the boundary value problem
posed above. We shall now show however that
this boundary value problem can be solved by
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assuming a priori that T is a function of ¢ only,
that is,
TX,Y)=T[®(X,Y)] (19)

Then equation (17) shows that P is a function of
¢ only. Hence,

VT = g—; Vo (20)
and therefore, equation (17) shows that
AP =V — VT = (1 - %-) Vo. (21)
Equations (18) and (21) imply
AVA(P?) = — j—d; |Vo|? (22)

Substituting equations (20}22) into equa-
tion (13) shows that

&T 14T/, dT\],s
(1= ) ||Ve)? =
[d<p2+Td¢< d<b>:||vl 0

Hence equation (13) will be satisfied if we put

dT
=0
dd>>

or equivalently

sal (i 1)]-o

Upon integration we find that

1 -
T=EI—+CZC 1o

dT 1dT | _
do? Tddi

(23)

where C; and C, are constants.

These constants, are evaluated by using the
boundary conditions. Thus, substituting equa-
tions (20) and (21) into the first boundary
condition (14) yields

1 dT
(1+ _ld(p)ﬁo Vo =0

for (X, Y)onS,.
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Substituting equation (23) into this result yields

~

(1 — Ag. V& =0 for (X,Y)onS,.

YT 1

Hence, the first boundary condition (14) is
satisfied if we put

C, =1
Equation (23) then becomes

T=1+C,e % (24)

When equation (24) is substituted into equa-
tion (17) and the results used in the second
boundary condition (14) we find

d=1-Cy+ C,e® for

so that the second boundary condition (14} is
satisfied when @(X,Y) = constant for (X, Y)
on §,. Since C, is arbitrary we can put

Co=1+C,

(X,Y)on§,

(25)
to obtain

®(X,Y)=0 for (X,Y)onS,. (26)

Consideration of the boundary conditions (15)
on § shows that it is convenient to define a
constant @, by

S, =T.—1-C,+ AP —1. (@7

Then it follows from equations (17), (24) and
(25) that the boundary conditions (15) will be
satisfied if we put

HX,Y) = (X,Y)onS
C, = (T, - )e®

(28)
(29)

for

Equations (29) and (25) are used to eliminate
C, and C, from equations (24) and (17) giving
the desired general temperature and pressure
distributions by the following functions of &:

T=1+(T, - 1)e*>"*® (30)
MP?P — 1) = (T, - )e®(1 —e ®+ . (31)
The constant @, is determined by the following
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relation from equations (29) and (27),
O =(T,— (1 —e®) + 4P - 1). (32

Notice that since P, < 1 and T, > 1, the right
hand side of equation (32) will always be nega-
tive if @, is positive. Hence, for the condition
of interest here, @, must be negative if it is to
satisfy equation (32). More generally, since
T.,>1 and P? is a decreasing function of
distance in going from S, to S it follows from
equation (31) that & is also a decreasing function
of distance in going from S, to S.

For the case shown in Fig. 1(b) the boundary
conditions (16a) and (16b) must also be satisfied.
It follows from equations (20) and (17) that
these conditions will be satisfied if we put

#,. Y6 =0 for (X,Y)ons§,
A,.V® =0 for (X,Y)onS,

(33a)
(33b)

Thus, the solution to the differential equa-
tions (11}{13) that satisfied the boundary
conditions (14)(16b) is given by equations
(30)(32). The function @ in these equations is
determined uniquely by equation (18) and the
boundary conditions (26), (28) and in addition,
for the case shown in Fig. 1(b) equations (33a)
and (33b).

Equations to determine potential in terms of

physical coordinates

Equations (30) and (31) express the tempera-
ture and pressure distributions as explicit
functions of a potential. Thus, once the potential
is determined as a function of the physical
coordinates, then so are the temperature and
pressure. In the relations for the potential
function it is convenient to simplify the boundary
conditions by defining a normalized potential
o by

DX, Y)
o,

Then it follows from equations (18), (26), (28),
(33a) and (33b) that ¢ can be obtained by

HX,Y) =

(34)
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Vg =0 (35a)
with the boundary conditions
¢(X,Y)=0 for (X,Y)onS, (35b)
dX,Y)=1 for (X,Y)onS (35¢)
#,.Vp =0 for (X,Y)onS,

} (36)

Relations for heat and mass flux at surface of

porous medium

Two quantities of important practical interest
are the heat flux conducted into the solid and the
mass flux leaving the porous region at the
surface S.

The heat flux conducted into the porous
material at the upper (or inner) surface is given
by

ﬁ,.Vd) =0 for (X,Y)onS,.

qs = k .Vt for

Introducing dimensionless quantities and using
equation (30) gives

(x,y)ons.

qshr
7 _ _q Vb { R
k. — 1) fig or (X,Y)onS

But & is constant on S. Hence (since @ is a
decreasing function of distance when going
from S, to S)

—Vo

"~ el

(37

and upon using equation (34)

qsh,

sz‘“ for (X,Y)onS. (38)

The mass flux at the upper or inner surface
is found from equations (4), (5), (9) and (10) to be

_ km 1
C,h T
for

V(AP?). A,

"
pu. Ay = _;_szp'ﬁ’=

(X,Y)on S.
Upon using equations (31), (37) and (34) this



1684

becomes

h,c,,(f"l_;:sl):m; for (X,Y)onS. (39)

Use of conformal mapping to obtain ¢(X,Y)

The nature of the boundary conditions (35b)
and (35c), makes it particularly convenient to
use conformal mapping to relate ¢ to X and Y.
Since ¢ is a solution to Laplace’s equation,
there exists a harmonic function y and an
analytic function W of the complex variable

Z=X+iY (40)
such that
W =y + ig. 41)

Physically the change in ¥ between any two
points in the physical plane is proportional to
the net energy flow across any curve joining
those two points. Hence, for the case shown in
Fig. 1(a), ¥ must vary between —oc and + o0
as X varies between —oo and + 0. For the
case shown in Fig. 1(b) it follows from the
Cauchy-Riemann equations that the boundary
conditions (36) are equivalent to requiring
that y be equal to a constant on §, and §,.
Hence, in this case

ReW = constant for Z on S, @)
ReW = constant for Z on §,.

Equations (35b) and (c) show that in all cases
ImW =0 for Zons§,

43)
ImW =1 ZonsS.

for

Hence, in the case shown schematically in
Fig. 1(a) the mapping Z — W transforms the
interior of the porous medium into the infinite
strip shown schematically in Fig. 2(a) in the
W-plane. For the case shown in Fig. 1(b) the
mapping Z — W transforms the interior of the
porous region into the rectangular region in the
W-plane shown in Fig. 2(b). In order to obtain
the mapping into the potential plane for the case
shown in Fig. 1(c) recall that every sufficiently
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0,1 a ®

/“(p=0 \‘I

(a) Region corresponding toFig. | (a)

=const
//_W ,~ Yr=const.

/F =0

¥

(b) Region corresponding toFigs.I(b} and (c)

FiG. 2. Potential planes (W = ¢ + i9) corresponding to
porous regions.

smooth doubly connected region can be mapped
into an annulus. Let the annulus be in the U-
plane and have a radial cut in it. Then the
mapping W = iln U maps the slit annulus
in the U-plane into the rectangular region
shown in Fig. 2(b) and hence, the mapping
Z — W transforms the interior of the porous
region shown in Fig. 1(c) also into the rect-
angular region in the W-plane shown in Fig. 2(b).

To obtain expressions for the surface heat
and mass fluxes we use the following well-
known relation given in [10] (p. 182),

- dw
V| = ‘EZ_ .
Then equations (38) and (39) become
q;h, —hC pu-fi\ _|dW
| D| kmlts — t,0) P\ k| P dz
for (X,Y)onS. (44)

Thus, once the mapping W — Z is determined,
which transforms the porous region in the
physical plane into the rectangle or strip in
the potential plane and which depends only on
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the geometry of the porous region, the surface
heat and mass fluxes can be calculated from
equation (44).

APPLICATION OF GENERAL SOLUTION

Step porous wall

As an example solution for a porous region of
the type shown in Fig. 1(a) consider the porous
wall with a step change in cross section shown
in Fig. 3. In this figure all lengths have been

~S -

w0
o

\
|- —
2 N
)Y

LSO

FiG. 3. Step porous wall in dimensionless physical plane.

Y
I AT X //_5 J -~ Line of
6 5 : 4! 7~ symmetry
I r (no flow and
! | : adiabatic)
I | i
7 8 2 3]
|[\ SRR IAANNAY I \ ~ BAAAANANN \\\\\\\\1 X
5%
(a) Region in dimensionless physical plane
P
=1
6 5 i 4
v N
I | ‘-/((k)+l-
7 3 K'(k)
//_ ‘P =0
8 ] 2 v
(b) Region in potential plane (W =y +/¢)
5 6 7 8 ,l 2 3 4 5
A fhk2 —k\fhk2 - o | ki Sk ks

{c)Region in the ¢ plane

FiG. 4. Porous wall with coolant supplied through periodic
openings.
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made dimensionless by dividing by the smaller
thickness. The mapping which transforms this
region into the unit strip of Fig. 2(a) is given
parametrically in terms of a complex variable
w by [8].

A
Z=l Aln E-l —In »+
T w-—1 w—A
enW_AZ 1/2
w:(w—_—l)
wherel < w < AforZonS.

Upon differentiating equation (45) we find
that

dw o
dz 4
Let ¢ = Rew. Then for Z on S, |[dW/dZ| is

given parametrically as a function of the dis-
tance X, along the upper surface by

1 E4 1))
Xs=—-A]1
= m(E59)

A+¢E
—In{=—= 1<E<A 4
ln<A_é>] E< A (46)
daw| ¢
dz| 4

~

Porous wall with gas supplied through periodic

slots

As an example of the porous region of the
type shown in Fig. 1(b) consider the section of
wall shown in Fig. 4(a). This may represent a
section of a long porous wall with a periodic
distribution of openings on the reservoir side.
The remainder of the boundary on the reser-
voir side could correspond to supports which
are frequently necessary when porous structures
are used. All lengths are normalized by the
thickness of the wall. Since both the porous
region in the physical plane and the correspond-
ing region in the W-plane {Fig. 4(b)] are rect-
angles they can both be mapped into the upper
half U-plane shown in Fig. 4(c) by elliptic func-
tions [9]. The mappings which transform
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corresponding points into corresponding points
(asindicated in Fig. 4)are

U = sn[WK'(ky), k]

) (47)
2 U = sn(ZK'(k,), k,)
ky
where
_ Kiky)
K(k) as)

ky, =k, S"[AK'(’H), kl]
K is the complete elliptic integral of the first
kind and
K'(k) = K(V’l — k?).
Upon differentiating equations (47) we find

2\%
i-(fy
dw _ k, K'(k,) ky
dZ  k,K'(k,)\ 1 - U?

As a consequence of these mappings, we find that
for Z on S, |dW/dZ| is given as a parametric
function of distance X along the upper surface
in Fig. 4(a) by

dW|  K'ky) [1- K
‘ 0Z| = Kle)\ 1= “)
x - Flsin™in k) O<ns<ld

: K'(ky)

where F is the normal elliptic integral of the
first kind and we have put

n = (ky ReU) 1.

Eccentric annular region

An example of a porous region of the type
shown in Fig. 1{c) is the region between the two
eccentric circular cylinders shown in Fig. 5(a).
All lengths are made dimensionless by the radius
of the large cylinder. It is shown in [9], p. 370,
and [10], p. 287, that this region is mapped into
the annular region in the V-plane in the manner
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Y
~So
/
) /_X‘
' AN
XZ-\ 4~ ’/ /_I
7/ \ X
3~ ~-2
\ SN,
Ls

{a) Dimensionless physical plane

B

(b} Intermediate V/~plane

[}
a L
4 3
| //—(p-O 2
) 14
=mw/\n Ry w/An Ry

{c) Potential (W) plane

FiG. 5. Porous eccentric annular region.
indicated in Figs 5(a) and (b) by

Z—g

V:
gZ — 1

where

14 XX, + (1 - X3)(1 - X))
g= X, + X,

and the outer radius R,, shown in Fig. 5(b), is
given by

R
0 X, — X,
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The annular region in the V-plane is mapped
into the rectangular region in the W-plane in
the manner indicated in Fig. 5(c) by

= iln(z —g>/lnR0. (50)

gZ — 1
As a result of these relations we find that
[dW/dZ | with Z on S; is given as a parametric
function of dimensionless distance L [see
Fig. 5(a)] along the inner circle by

W=i
llnRo
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RESULTS AND DISCUSSION

The main purpose of this paper has been to
develop a general solution for a certain class of
two-dimensional compressible porous cooling
problems. This class of problems corresponds
to the situation where gas from a reservoir
at constant pressure and temperature is forced
through the porous region and exits at a
boundary maintained at constant temperature
into a region of constant pressure. The solution

1 -
1-—

L, =(X, - Xz){tan_l[(

1 — 20 cos ¥ + o2

X3
xi

Y]

>—1t$l;<1t

(51)

dw|_
dz |~ X, - X,)

(InRo) ——

* -

1)

where o is defined by
_ (= XY - X
A -XxE -1 - xDt

and we have put y = (In Ryl

These results can now be used with equations
(44) to compute the heat flux into the porous
region and the mass flux through the porous
region at the surface s through which the gas
is exiting from the region.

qsh,

pvsh C,

is obtained by using the equation of conserva-
tion of energy to define a potential that satisfies
Laplace’s equation within the porous region
and that satisfies certain simple boundary
conditions on the boundary of the region. The
remaining equations that govern the problem
can then be solved to provide general solutions
for the pressure and temperature distributions
explicitly in terms of this potential. Therefore,

x: /b,

F1G. 6. Dimensionless mass flux

and heat flux at surface of

step porous wall.
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by solving Laplace’s equation in any specific
region to obtain an expression for this potential
in terms of the physical coordinates, the tem-
perature and pressure are determinable func-
tions of position.

Several illustrative examples were worked
out in detail by using conformal mapping to
obtain the required solutions to Laplace’s
equation. These results are shown in Figs. 6-8.
In each figure a dimensionless mass flux leaving
the porous region and a dimensionless heat
flux at the surface are plotted as functions of
position along the surface. The density in the
exit mass flux is that corresponding to the
imposed exit pressure and surface temperature.
The quantity @, in the dimensionless fluxes is
obtained from equation (32).

Figure 6 gives results for walls having various
step changes in their thickness as designated
by the parameter A. As a special case it is
evident from the left end of the curves that for
a wall having a uniform thickness h, the results
are given by

pvsh,C, q.h, _
kml¢s| B |¢s| km(ts - too) B

Consequently, for the step wall, the dimension-
less mass and heat fluxes vary from unity to
h,/a, where a is the thickness of the thick region.
The curves show that the two-dimensional
effects are primarily confined to within one
thickness of the thin portion of the wall to the
left of the step (x,/h, = —1) and one thickness
of the thick portion to the right of the step
(xs/a = 1 or x /h, = A).

Figure 7 shows results for a wall that is of
uniform thickness but has its lower boundary
only partially exposed to the coolant reservoir.
For small blockage, that is when the opening a
is close to the width b, the curves go toward
unity, which is the result for an unobstructed
plane wall. As expected the highest velocities
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and heat fluxes are at the exit locations opposite
the center of the opening.

Results for eccentric annular porous regions
are shown in Fig. 8 for various eccentricities
and for the case where the radius of the inner
circle is one-half that of the outer circle. As
would be expected the largest flows occur where
the wall is thin. For the concentric case the
solutions from equations (44) and (51) reduce to

pushrcp _ qshr _ hr/ri
knl® [ knlty — 1) In(h/r)

The three sets of results shown in Figs. 6-8
serve to demonstrate the type of results that
can be obtained from the general two-dimen-
sional compressible solution developed in this

paper.
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ANALYSE DU TRANSFERT THERMIQUE POUR UN ECOULEMENT COMPRESSIBLE
DANS UN MILIEU POREUX BIDIMENSIONNEL

Résumé—On force 4 travers une région poreuse bidimensionnelle un gaz provenant d’un réservoir a
pression et température constantes. La surface de sortie est @ une température et 4 une pression uniformes
données. Les températures locales du gaz et de la matrice solide sont supposées égales. On trouve que les
solutions générales pour la température et la pression locales dans le milieu poreux sont fonctions d'un
potentiel. Ce potentiel peut &tre déterminé par la résolution de I'équation de Laplace dans la région poreuse
pour un ensemble simple de conditions aux limites et on connait alors la température et la pression comme
des fonctions de point. A cause de la nature des conditions aux limites, il est assez facile de résoudre 1’équa-
tion de Laplace par une transformation conforme. Pour illustrer cette technique quelques résultats massique
et thermique sont données pour une paroi poreuse avec un échelon dans I'épaisseur une paroi alimentée
en gaz a travers des fentes périodiques et une région annulaire excentrique.

ANALYSIS DES WARMEUBERGANGS BEI KOMPRESSIBLER STROMUNG IN
ZWEIDIMENSIONALEN POROSEN MEDIEN

Zusammenfassung— Gas wird von einem Behilter konstanten Druckes und konstanter Temperatur durch
eine zweidimensionale, pordse Zone geleitet. Die Oberflache, durch die das Gas austritt, wird auf ganz
bestimmten gleichférmigen Werten von Temperatur und Druck gehalten. Die lokalen Werte der Gas- und
Feststofftemperatur werden als gleich angenommen. Allgemeine Losungen fiir die lokalen Temperatur-
und Druckverteilungen im porosen Medium werden als Funktion eines Potentials gefunden. Dieses
Potential kann durch die Lsung der Laplace-Gleichung in der pordsen Zone fiir einige einfache Rand-
bedingungen bestimmt werden. Temperatur und Druck sind dann bekannte Funktionen des Ortes.
Wegen der Art der Randbedingungen ist es sehr bequem, die Laplace-Gleichung durch konforme Abbil-
dung zu lésen. Mit dieser Technik wurden einige aufschluBreiche Ergebnisse fiir den Wirme- und
Massenstrom errechnet fiir eine pordse Wand mit stufenformig gednderter Dicke, eine Wand mit regel-
méBigen GasdurchlaBschlitzen und einer exzentrischen Kreisringzone.

AHAJIN3 TEHJIOOBMEHA 11 CJIYYAA HECHUMAEMOTO
TEUEHUA B IBYMEPHBIX IIOPUCTBLIX CPEJIAX

Annotanua—I'as 13 pesepByapa NpM MOCTOAHHLIX AABICHUH I TEMIEPATYpE MOJ, JABJICHUEM
MPOCAYMBAETCA Yepes JBYMEDHHI NOpHCTET yuacToK. IIoBepXHOCTH, uepe3 KOTOPYIO
BRIXOJUT ras, HAXOJZUTCA NPH 3aJaHHON OJHOPOXHON TeMmepaType u xaBieHuu. JIOKATLHEIE
TeMIepaTyphl ra3a U TBEDIOrO CKeJeTa IPUHUMAKITCA ONMHAKOBHIMM. Perrenna B ofimem
BUJE AJA JOKAJBLHOM TeMIepaTypsl U JaBIeHUA B MOPHUCTON Cpele HAXOZATCA KaK GyHKIUA
HOTeHuuaka. OJTOT MOTEHLMAI MOMKHO OIpeJesUTh W3 pelieHus ypaBHenus Jlammaca B
HOPUCTOM YYacTKe [JIA MOPUCTOI CHCTEMBI 'DAHMYHBIX YCJIOBMiA, TOCJIE 4ero TeMuepaTypa u
AaBieHue OyIyT U3BECTHHIMM (YHKIUAMH [0JIOKeHUA. BiarojapA xapaxrepy rpaHMYHBIX
yeaosult npakTudeckn yao0HO peulaTh ypaBHeHue Jlammaca ¢ moMompio KOHGOPMHOTO
oroGpamenusa. C IOMOHIBIO 9TOH METOTUKM PACCYUTAHE HEKOTOPBIE HATJIANHEE PE3YIbTATH
IJIA TOTOKA TEMIa M MAcChl B CIY4Yae NOPHCTOM CTEHKH CO CKAYKOM TOJIUMHBI, CTEHHH C
nogavefl rasza 4epe3 NepUORUYECKM DACIIOJIOKEHHbBIE INEJN M SKCIEHTPHYHOTO KOIBUEBOTO
V4acTHa.



